Improve Hybrid Particle Swarm Optimization and K-Means for Clustering

نویسندگان
چکیده

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

A hybrid sequential approach for data clustering using K-Means and particle swarm optimization algorithm

Clustering is a widely used technique of finding interesting patterns residing in the dataset that are not obviously known. The K-Means algorithm is the most commonly used partitioned clustering algorithm because it can be easily implemented and is the most efficient in terms of the execution time. However, due to its sensitiveness to initial partition it can only generate a local optimal solut...

متن کامل

Particle Swarm Optimization Algorithm Based k-means and Fuzzy c-means clustering

Data mining is the process of extracting hidden patterns from huge data. Among the various clustering algorithms, k-means is the one of most widely used clustering technique in data mining. The performance of k-means clustering depends on the initial clusters and might converge to local optimum. K-means does not guarantee the unique clustering because it generates different results with randoml...

متن کامل

Fuzzy Particle Swarm Optimization Algorithm for a Supplier Clustering Problem

This paper presents a fuzzy decision-making approach to deal with a clustering supplier problem in a supply chain system. During recent years, determining suitable suppliers in the supply chain has become a key strategic consideration. However, the nature of these decisions is usually complex and unstructured. In general, many quantitative and qualitative factors, such as quality, price, and fl...

متن کامل

GROUND MOTION CLUSTERING BY A HYBRID K-MEANS AND COLLIDING BODIES OPTIMIZATION

Stochastic nature of earthquake has raised a challenge for engineers to choose which record for their analyses. Clustering is offered as a solution for such a data mining problem to automatically distinguish between ground motion records based on similarities in the corresponding seismic attributes. The present work formulates an optimization problem to seek for the best clustering measures. In...

متن کامل

Diversified Particle Swarm Optimization for Hybrid Flowshop Scheduling

The aim of this paper is to propose a new particle swarm optimization algorithm to solve a hybrid flowshop scheduling with sequence-dependent setup times problem, which is of great importance in the industrial context. This algorithm is called diversified particle swarm optimization algorithm which is a generalization of particle swarm optimization algorithm and inspired by an anarchic society ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Journal of Information Technology and Computer Science

سال: 2019

ISSN: 2540-9824,2540-9433

DOI: 10.25126/jitecs.20194183